데이터 스토리텔링

루커스튜디오 데이터 혼합 101

루커스튜디오 데이터 혼합 | Looker Studio
루커스튜디오 데이터 혼합 | Looker Studio

대부분의 비즈니스 문제는 두가지 이상의 데이터 소스들을 결합하여 바라봐야 의미있는 인사이트를 도출 할 수 있습니다. 광고데이터와 성과데이터, 매출데이터와 쿠폰데이터, 사용자데이터와 행동데이터 등과 같은 여러 데이터 조합들이 존재합니다.

루커스튜디오의 기능 중 하나인 데이터 혼합은 두 가지 이상의 데이터간 결합을 제공하는 기능으로 데이터 시각화 및 분석을 더욱 풍부하게 만들어줍니다.

이러한 데이터 혼합 방식은 루커스튜디오만의 방식은 아닙니다. 이미 데이터를 처리하는 데이터베이스 분야에서는 널리 사용 되고있습니다.

루커스튜디오의 데이터 혼합 종류
루커스튜디오의 데이터 혼합 종류

이번 시간에는 루커스튜디오 데이터 혼합 기능에 대해 배워보고 루커스튜디오의 대시보드를 더 깊이있게 만들어봅시다.


루커스튜디오 데이터 혼합 대시보드

데이터 혼합방식을 처음 접한 분들은 개념이 생소할 수 있습니다. 뿐만아니라 이미 SQL 등을 공부하면서 혼합 방식을 알고 계셨던 분들도 혼합은 헷갈리는 개념입니다. 먼저 루커대시보드를 가지고 혼합에 대한 개념을 가볍게 살펴보도록 하겠습니다.

루커스튜디오가 제공하는 5가지 조인방식을 동일한 데이터를 가지고 혼합하였을 경우 혼합된 최종 결과 데이터가 어떻게 구성되는지 시각적으로 본다면 이해가 좀 더 편할 것입니다. 아래의 이미지에 각 혼합 방식에 따른 결과 테이블을 살펴보실 수 있습니다.

데이터 혼합 방식 대시보드
데이터 혼합 방식 대시보드

데이터 혼합 방식 종류

  • 레프트 아우터(Left Outer Join)
  • 라이트 아우터(Right Outer Join)
  • 풀 아우터(Full Outer Join)
  • 이너 조인(Inner Join)
  • 교차 조인(Cross Join)

💡
혼합방식 대시보드가 궁금하신 분들은 아래에 댓글을 남겨주세요! 대시보드 링크를 보내드려요🙌

1. 루커스튜디오 데이터 혼합

먼저, 루커스튜디오 데이터 혼합에 대한 기본적인 내용을 알아보겠습니다. 데이터 혼합은 최대 5개의 데이터 소스를 조합하여 차트를 생성하는 기능을 제공합니다. 이를 통해 서로 다른 데이터 소스간 측정항목과 측정기준을 조합한 새로운 차트를 만들 수 있습니다. 데이터 혼합을 통해 다양한 데이터 소스의 구성을 효과적으로 활용할 수 있습니다.

여러 데이터 소스를 기반으로 차트를 만들 수 있습니다.

  • 최대 5개의 데이터 소스 결합
  • 최대 10개의 조인 키를 사용하여 결합

데이터 혼합을 추가하는 3가지 방법

1) 기본 : 리소스 → 혼합 소스 관리 클릭 후 데이터 혼합

데이터 혼합 추가하는 기본 방법
데이터 혼합 추가하는 기본 방법

2) 설정탭 이용 : 설정탭내 데이터소스 → 데이터 혼합 클릭

데이터 혼합 추가하는 응용 방법 1
데이터 혼합 추가하는 응용 방법

3) 차트 이용 : 두개 이상의 차트를 선택하고 데이터 혼합 생성

데이터 혼합 추가하는 응용 방법2
데이터 혼합 추가하는 응용 방법2

🔥
응용 꿀팁
  • 혼합된 데이터는 계산된 필드 기능을 제공하지 않지만 혼합화면 내에서 테이블 내 계산된 필드를 생성하여 추가적인 측정기준 또는 측정항목을 만들 수 있습니다.
  • 데이터 혼합을 사용하면 기존 측정항목이 자동 집계되지 않습니다. 새 집계 방식을 사용하여 측정기준과 측정항목을 사용할 수 있습니다.

2. 데이터 혼합 기본 구성

혼합 데이터는 루커스튜디오의 데이터 혼합 부분에서 새롭게 만들거나 업데이트를 합니다. 해당 화면과 데이터 혼합에 대한 기본적인 구성을 살펴봅시다.

  • 조인구성 : 조인구성은 조인 연산자와 조인조건(조인 키)을 설정할 수 있습니다.
  • 테이블 : 혼합에 사용할 소스 데이터의 구성을 의미합니다. 측정기준, 측정항목, 기간, 필터로 이루어져있습니다.
  • 혼합데이터 이름 : 혼합데이터를 생성하면 기본으로 혼합데이터라는 이름으로 생성되어 여러개의 혼합데이터간 구분이 어렵습니다. 혼합데이터 생성 시 이름을 설정하며 이러한 문제를 해결할 수 있습니다.
  • 혼합 데이터 요약 : 실제로 혼합된 데이터에 포함되어 사용할 수 있는 측정기준과 측정항목 리스트를 확인할 수 있습니다.
데이터 혼합 기본 화면 구성
데이터 혼합 기본 화면 구성
데이터 혼합 조인 화면 구성
데이터 혼합 조인 화면 구성
🔥
응용 꿀팁
  • 두가지 데이터 소스에 동일한 필드 이름을 가진 경우 이를 구분하기 위해 필드 이름 접미사로 테이블 이름이 사용됩니다.
데이터 소스 접미사
  • 혼합데이터 이름과 더불어 테이블 이름도 지정하면 추후 혼합데이터 수정 시 훨씬 편리합니다.

3. 혼합 유형 (조인 유형)

1) 레프트 아우터 / 왼쪽 조인 (Left Outer join)

루커스튜디오 레프트 아우터 조인
루커스튜디오 레프트 아우터 조인

왼쪽 조인 유형은 가장 기본적인 조인 유형입니다. 왼쪽 테이블을 기준으로 모든 행을 반환하고 오른쪽 테이블은 왼쪽 테이블 조인 키값과 일치하는 행만 반환합니다.

오른쪽 테이블에 존재하지 않거나 누락된 값은 최종 혼합 데이터에서 빈칸 혹은 null 값으로 표현됩니다.

아래의 예시에 왼쪽 유저 테이블사용자 이름김아우인경우 매출 테이블에는 조인 키에 해당하는 사용자 ID = 3번이 없기 때문에 최종 유저 이름별 매출 테이블에서는 사용자이름은 등장 하지만 해당 하는 유저의 매출이 빈칸으로 반환 되는 것을 알 수 있습니다.

루커스튜디오 레프트 아우터 조인 데이터 필터 예시
루커스튜디오 레프트 아우터 조인 데이터 필터 예시
💡
사용 예시
  • 광고 데이터GA 성과 데이터는 광고 캠페인과 UTM이라는 키값을 기준으로 광고에서는 노출, 클릭, 비용이 집계되고 성과에서 매출이 집계 됩니다. 이때 광고 데이터를 기준으로 레프트 조인을 합니다.

2) 라이트 아우터 / 오른쪽 조인 (Right Outer join)

루커스튜디오 라이트 아우터 조인
루커스튜디오 라이트 아우터 조인

라이트 아우터 조인 유형은 왼쪽 조인과 반대로 오른쪽 테이블을 기준으로 왼쪽 테이블을 모두 반환합니다. 테이블이 반대일뿐 왼쪽 조인과 동일한 원리 입니다.

활용

2개의 보완적인 데이터 소스로 하나의 데이터 소스를 만드는 경우에 활용 가능합니다. 예를들어 아래와 같이 매출 데이터 소스를 확장하기위해 한쪽에는 유저 소스를 레프트 조인으로(키값은 유저 ID), 다른 한쪽에는 제품 정보 소스(키값은 판매 상품)를 넣어서 매출 데이터 분석을 더욱 풍부하게 만들 수 있습니다.

3가지 데이터 소스 결합의 예시
3가지 데이터 소스 결합의 예시
루커스튜디오 라이트 아우터 조인 데이터 필터 예시
루커스튜디오 라이트 아우터 조인 데이터 필터 예시

3) 이너 / 내부 조인 (Inner join)

루커스튜디오 이너 조인
루커스튜디오 이너 조인

내부 조인은 두 테이블 조인조건 모두에서 일치하는 행만 반환합니다. 각 데이터 세트의 다른 모든 행은 제거됩니다. 

두 데이터 소스간 중복에 관련한 분석을 하는 경우 많이 사용합니다. 또한 동적 데이터로 데이터 세트를 필터링하는 쉬운 방법입니다.

활용
  1. 코호트 집단간 교차 인원 분석
  2. GA4의 웹 앱 디바이스 교차 사용 분석
루커스튜디오 이너 조인 데이터 필터 예시
루커스튜디오 이너 조인 데이터 필터 예시

4) 풀 아우터 / 외부 조인 (Full Outer join)

루커스튜디오 풀 아우터 조인
루커스튜디오 풀 아우터 조인

외부 조인은 조인 조건이 충족되지 않더라도 두 테이블의 모든 행을 반환합니다.

조인 조건을 충족하는 행은 해당하는 값을 반환하지만 조인 조건에 해당하지 않는 필드 값은 null이 반환됩니다. 

활용

데이터베이스(1st party data)와 GA4(3rd party data)를 연결하며 데이터베이스에서 삭제된 데이터가 GA4에서 확인 가능하며 GA4에서 추적되지 않은 값이 데이터베이스에서 확인가능합니다. 이처럼 양쪽의 환경을 모두 고려해야하면서 서로의 데이터가 모두 필요한 경우 사용합니다.

루커스튜디오 풀 아우터 조인 데이터 필터 예시
루커스튜디오 풀 아우터 조인 데이터 필터 예시

5) 교차조인 (Cross join)

루커스튜디오 교차 조인
루커스튜디오 교차 조인

교차 조인은 모든 테이블 행의 데카르트 곱(두 소스의 모든 구성요소의 순서 쌍)을 반환합니다.

즉, 왼쪽 데이터 세트의 모든 행은 반복을 통해 오른쪽 데이터 세트의 모든 행과 곱해져서 데이터를 반환합니다.

이는 조인 키가 필요하지 않은 유일한 조인 유형입니다.

활용

데이터의 각 행 별 조인이 필요한 경우에 사용합니다.

루커스튜디오 교차 조인 데이터 필터 예시
루커스튜디오 교차 조인 데이터 필터 예시


마무리

데이터 혼합의 조인 조건을 잘 활용한다면 분석을 더욱 풍부하게 만들어주는 게임 체인저가 될 수 있습니다. 

이러한 기능을 활용하기 위해서는 처음에는 까다로울 수 있지만 연습해서 여러분들 것으로 만든다면 멋진 대시보드를 만드시는데 도움이 되실 겁니다.

관련해서 궁금한 내용이 있으시다면 편하게 댓글로 질문을 남겨주세요 🙂

About the author
이재철

Storytelling with Data

일상의 데이터를 멋진 이야기로

데이터 스토리텔링

Great! You’ve successfully signed up.

Welcome back! You've successfully signed in.

You've successfully subscribed to 데이터 스토리텔링.

Success! Check your email for magic link to sign-in.

Success! Your billing info has been updated.

Your billing was not updated.